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Abstract. We construct induced representationslbt= U, (so(3)) = U,(sl(2)) on suitable
cosets of the matrix quantum gro§@, (3). From these we obtain canonically finite-dimensional
representations dff only of odd dimension, i.e. of integer spin. The matrix elements of these
finite-dimensional representations are different from the staridandes, which will be essential

at least for the roots of unity case.

1. Introduction

From the papers of Drinfeld [1] and Jimbo [2] it is clear that the quantum algéhras(2))
and U, (so(3)) are isomorphic, since the constructions in [1, 2] use only information about
the root systems aofl(2) = s1(2, C) = 50(3,C) = so(3).

On the other hand, the corresponding matrix quantum gréupg2) and SO, (3) are
not isomorphic. More precisely, as in the classical case, the matrix quantum $fQup)
is a double cover of§0,(3) [3]. Thus, one may expect that the induced holomorphic
representations éf = U, (s/(2)) realized on suitable cosets 80, (3) will have the feature
of usual S0 (3, C) holomorphic irreps of being integer spin only.

This is exactly what we achieve in the present paper. For applications it is also important
that the matrix elements of these finite-dimensional representations are different from the
standard/{ ones, which will be essential at least for the roots of unity case.

The procedure used in this paper was proposed by the first named author in 1993
(unpublished) on the example 6%,(2). In the text we refer to the paper [4], where this
procedure was applied 6L, (n) andSL,(n), and from where the mentioned unpublished
results may be recovered far= 2.

2. Matrix quantum group SO,(3) and the dual U,(so(3))

The matrix quantum groupl = SO, (n) is the g-deformed analogue of the complex Lie
group SO(n, C) [5]. It is generated by:?> elements which may be collected in anx »
matrix

T = () (2.1)
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and are subject to the following relations [5],
R,ThiT» = TuTiR, (2.2)
Tcr'ct=cr'icr =1, (2.3)
whereR, is a certaim? x n®> matrix, 1 = T ® I,, T = I, ® T, I, is the identityn x n

matrix, andC is a certaim x n matrix. The coalgebra structure is given by [5] the following
formulae for the co-produdly, co-unite 4, and antipode/ 4,

Satix) = Zlij ® Lk (2.4a)
=1

eAtik) = Sik (2.40)

yal)y=CcT'Cc? (2.4c)

where the antipode is given in matrix form for compactness. Using this form, relations (2.3)
are rewritten in the general form

T ya(T) = ya(T)T = I,. (2.5)
In the case: = 3 the R-matrix R, has the form [5]
g -
1
q—l
by 1 r=qg—qt
R, = o 1 o =—q 2 (2.6)
1 B=1—-qgHr
B « q !
A 1
L q
and the matrixC is
0 0 q—l/Z
C = ( 0 1 o0 ) C? = I. (2.7)
q1/2 0 0

With these choices from (2.2) and (2.3) we can derive the explicit relations which the
nine elements;; obey. We give them in an appendix since they will be necessary only in
the next section.

The quantum algebra in duality wit§O,(n) is U,(so(n)). Forn = 3 one has
U = U,(s0(3)) = U,(s1(2)), cf [5]. We use a rational basis &f extracted from the
L-operators of [5]. It differs from the basis of [2] by an algebraic transformation. In terms
of this basis of/, which we denote by *, k*, the algebraic relations are

XtX - X Xt =0®"—k)/x Kk =k kT =1y

kExt = q:FlX’Lki KEX- = qilX—ki (2'8)
the coalgebra relations are

Sk =kt @ k*

X =X"Tk T+ X" (2.9)

(X)) =k X +X Q1

k) =1 su(XH) =0 (X)) =0 (2.%)

yu(k®) = k¥ Yu(XT) = =X Tk~ (X)) =—ktX". (2.%0)
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The duality between the algebridsand A is given by the pairings between the generators
which follow from [5] (formula (2.1) fork = 1, up to renormalization); explicitly, we have

0 -1 0
<X+,T>=<0 0 q1/2>

0 0 0O
0 0 0
(x-,Ty=1(1 0 0 (2.10)
0 —¢g %2 0
g¥ 0 0
k=, T) = ( 0 1 0 ) .
0 0 ¢*

These pairings are supplemented with the axiomatic pairing
(X, 1) = ey(X) VX el. (2.11)

The pairing between arbitrary elementsipfand A follows then from the properties of the
duality pairing.

3. Representations ofU,(so(3))

Next we introduce the left regular representationZbfwhich in theq = 1 case is the
infinitesimal version of

T(MHYM = MM M' M e SO@3,C) (3.1)

namely we set

3

m (Xt = Z(VM(X), tit ) i Xel. (3-2)
=1

Note that in [4] was used the classical antipoglg (with deformation parameter set to
classical values) instead ¢f;, since in these cases things differ only in some intermediate
formulae by inessential " factors. This would also be true here, but for uniformity we use

Y-
Explicitly, we obtain from (3.2) for the generators Wf

(k) = gy (3.3)
21 122 123
T (XHT = <—6]1/2131 —q Ytz —q1/2t33> (3.-30)
0 0 0
0 0 0
mr(X)T = ( -t —th2  —h3 ) (3-%)
g1 qYPtr Y13

In order to derive the action of; on arbitrary elements of the basis, we use the
following twisted derivation rule consistent with the coproduct and the representation
structure. Namely, we use [4]

mr(y)ab = (L (8(y))(a ® b)) (3.4)

whererm is the multiplication mapr: AQ A — A, m(f@ f)=f-f18, =008, is
the opposite coproduct(is the permutation operator). Thus, in our concrete situation we
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have
mwp(kH)ab = wp (kF)a - 7wy (k)b (3.59)
7L (XNab =np(kMa -7, (X0 + 7w, (X)a - b (3.50)
(X ab=n,(X )a -np(k")b+a-m (X )b. (33:)

Furthermore, we shall use the fact that is a representation, i.e.
n(ZZ") = (Z) - (Z))
a(@Z + BZ) =an (Z) + Br(Z) a, B eC.

Next we introduce the right regular representatign(X) [4] (which is also used in [6],
although not given in this form, there being called left action and denoted )by

(3.6)

3
ﬂR(X)tij = Ztik<Xa tkj) Xel. (37)
k=1

Of course, as in [7] we shall use (3.7) as right action in order to reduce the left regular
representation (and we could have also reversed the role of left and right).
Explicitly, we have

mr(kH)t; = gt (3.89)

0 —t1 qY?n,
TR(XHT = (0 —121 ql/2t22> (3.80)
0 -t qY%tz
n2 —q Y?n3 0
nr(X )T = (l‘gg —q_l/2t23 0) (3&:)
132 —q Y133 0
The twisted derivation rule (cf [4, 6]) is now given by
mr(y)ab = m(mg(8y, (y))(a ® b)) (3.9)
i.e. in our concrete situation
ar(k)ab = rr(kH)a - Tr(kF)b (3.1(8)
ar(XNab = (X Na - wrkHb+a - wr(XHb (3.1M)
ar(X)ab =ngr(k™)a -7r(X)b+ mr(X )a - b. (3.1@)
Furthermore, we note that sineg; is a representation we have
Z7Z) = Z)- A
nR(ZZ") = g(Z) - wr(Z") (3.11)

ar(@Z + BZ) = ang(Z) + Brg(Z) a, B eC.

To continue further we need a PBW basis fér Due to the fact that there are many
relations between the nine generatoys there are several ways to introduce such a basis
[3]. In particular, one may use the 2-to-1 coveringSad, (3) by the matrix quantum group
SL,(2) [3]. However, there is a more economic and simpler way to introduce such a basis
via the use of a Gauss decomposition. Moreover, the approach of [7] would require the
use of a Gauss decomposition anyway. To obtain this decomposition we suppose now that
there exists an elemeng;'. Explicitly, we have

1 h2 hs 1 —q¥% —[2]7%2\ /tz3 O O 1 0 0
T = <121 122 l23> = <0 1 & ) ( 0 n 0) <—6]l/2§ 1 0)
31tz 133 0 0 1 0 0 ms/ \—[2]7%? ¢ 1
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tg +Ene+q 27 % %y —qY2En — g2l 620ty —[2] Y6 %15
=\ —qY?nt— q 2] 7% N+ q &L ta3 &t33
—q7%[2] ¢ %33 q Yts3 f33
(3.12)
where
£ = tyatyy ¢ = tyt3 t = ta3
N = tggdu di1 = 122133 — 123132 (3.13)
[n] =[nly = (¢"*—q7"*)/N N =gl —q7?
and the following formulae are used to check (3.12):
t3adi1 = diits3 15y =d4 = n? =1y
£2 = —[2)t1at35 t1ad11 = g% duitis t23d11 = q diato3
¢? = —[2)t33'ta1 ta1d11 = g% duitar t3od11 = q diatz2 (3.14)

taadiatsr = g >{tiatas — 14 — ¢*tiatar}tds
tadiityy = g™ *tiatsr — ¢ Y Ptiotas
tygdiitsz = g Ptostar — qYPta3t01.

The above relations in turn are verified by use of the explicit form of the algebraic relations

of SO, (3) which are given in the appendix.
Thus, we see that the relevant variables&rg, ¢, ¢ and so a possible PBW basis is

f = fuepe = E™n°tP¢" mleZ,,e=01pecl. (3.15)
The commutation relations in this basis are
-1 -1
t€ = t tn=nt tr = t
§=q ¢ n=n {=q ¢ (3.16)

né =§&n tE =8¢ ¢n =mng.
We see that this basis is very convenient since it is almost commutative.
Following the procedure of [4] our representation spaces will have elements which are
formal power series in the basis (3.15) obeying right covariance conditions. By abuse of
the notion we shall call these elements functions; explicitly, we write

QZ) = Z Mmépﬁgmnetpgl' (317)
mbely
€=0,1,peZ

The right covariance conditions [4] for the holomorphic representations are with respect to
X, kT
7r(X7)p =0 (3.1&)
mr(k)g=q"p (3.1&)
where r is a parameter to be specified later. Note that fronl&3 it follows that
nr(k™)¢ = g "¢. First, we calculate

ﬂR(X)(g 'Z>=<_q01/z 8) (3.19)

which means that in order to fulfill (38«) our functions should not depend on the variable
Z, i.e. the functions become
F= D MmepE L. (3.20)

meZ,
€=0,1,peZ
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Note that the algebrd), with PBW basis&é”n“t? may be viewed as thg-deformation
of (the local coordinates submanifold of) the co3et= SO(3,C)/G~, whereG~ is the
subgroup of lower diagonal matrices with main diagonal entries equal to 1. Furthermore,
note the decompositiod, = V)@ Y}, where), J); are isomorphic subalgebras with bases
EmP, Mt respectively.

Next we obtain by direct calculation

mr(kTEM Y = qPEM NP, (3.21)

From the latter and (28b) it follows that in (3.20) there is no summation jnsincep = r;
consequently, the parameteshould be integer and our functions become

¢ = § UmeE" Nt reZ. (3.22)
meZy
e=0,1

Now we suppose that is not a root of unity. We calculate the transformation action:

JTL(ki)SmT)Etr — q:t(mfr)%.mnetr (3231)

7TL(X+)§mT]€tr — _qm/Z—l[m]é_.m—lnetr (323))
2r —

L (X )gm s = q@m2 2 =M e (3.2%)

[2]
It is easy to check that; (k%) andx, (X*) satisfy (2.8). Note that these transformations do
not change the parametersande, i.e. we have obtained representations parametrized by
r € Z, e =0, 1. However, we see that the parametas fictitious since the transformation
rules do not depend on it. Furthermore, the variaplis passive also with respect to the
right action: mx(X*)n = 0, mr(k*)n = n. Thus, for fixede the representation acts in the
g-coset)s, i.e. our functions become

o=pE,nt)= Z W€ nt" rez,e=0,1. (3.24)
meZy

For simplicity, we shall further set = 0 and denote our functions gg¢, r). We denote
the representation action by, which in terms of the functiong (&, r) may be written as

7 (k)€ 1) = g7 T, 1) (3.25)
7 (X&) = —¢ T, Dsp (€, 1) (3.2%)
- ks o
T (X ), t) = 3 qul/z(q qul/z —q qu/z)ﬁo(év 1) (3-25:)
g—l
T;fE) =€) DifE) =T =T ) f ). (3.26)

We denote withC, the representation space of functiopsgt, r) with covariance
properties (3.18) and transformation laws (3.23) (with= 0) and (3.25). For generic
g € C andr € Z, the representation, is reducible. Indeed, for € Z, the representation
spaceC, has an invariant subspaég of dimension 2+ 1 consisting of the vectois”:" for
m=0,1,...,2r, (°° = 1,). The latter statement is obvious, as from2@®) it follows
that, (X)€%t = 0. Thus,% ¢ (£%° = 1,) is the lowest weight vector, whilg is the
highest weight vectorr, (X*)t" = 0.

Thus, the set of finite-dimensional representationé/ afbtained as subrepresentations
of the elementary representations realized on the c}z)%enr yql) of SO, (3) is parametrized
by non-negative integers and for fixed € Z, the corresponding finite-dimensional
representation is of dimension 2 1, i.e. all dimensions aredd.
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The latter result should be put in contrast with the fact that the set of finite-dimensional
representations ot/ obtained as subrepresentations of the elementary representations
realized on cosets &fL,(2) is parametrized by non-negative integers and for fixedZ
the corresponding finite-dimensional representation is of dimensieri, i.e. all integer
dimensions are possible.

Thus, we recover the classical result that the finite-dimensional irre§©@g8, C) are
only of integer spin j € Z,, (j = r), and hence obdd dimension 7 + 1, while the
finite-dimensional irreps ofL(2) (which is a double covering group &fO(3, C)) are
of (half-)integer spinj € Z,/2, (j = r/2), and hence of any integer dimensiop 2 1.

(Of course, physicists consider finite-dimensional irrepsSof(3, C) also of half-integer
spin, calling them two-valued irreps; moreover, infinitesimally such considerations are also
mathematically correct sinca(3) = s1(2).)

Otherwise, other results are in parallel with t§€,(2) case. In particular, the
finite-dimensional invariant subspaég discussed above is the kernel of an oper&tor
intertwining the representations andx,, i.e.

7, (Y) = 7, (Y)I, YeU (3.27)
wherer’ is expected to be-r — 1. According to the general prescription [7] this operator
should be given byrz (X ™))* where the parameteris expected to ber2-1 (=dim&,). This
can be checked directly. Indeed, ket N and let us suppose that = (rz(X1))’¢ € C,.
The latter means first (by right covariancel@:)) that 7z (X~ )¢’ = 0. We calculate

(X 7)e = mr(X7)(r(XT)) e

= [7r(X7), (Tr(X))’le
mr([X™, (X)) Do
mr([X™, (X)) Do
= mr((SIX) Mg VT — TV g

- %ﬂR((X*)S—l)nR(q“-”/zk‘ —q e
— %nR((X-&-)s—l)(q(x—l)/Z—r _ qr—(s—l)/Z)(p
_ Dl —1=21 oty (3.28)

(2]
For ¢ not a root of unity the last quantity may be zero only foe= 2r + 1, as expected.
Moreover, we use the other condition of right covariancd &), 7z (k)¢ = ¢ ¢, i.e.
mr(kH)g = mr(k)(TR(XF))
= mr(kT(XT))e
=nr(g " (XT) kg
=g nr((X))mr(kM)g

r—s ./

=q" (X)) =q""¢

—r=r—s=-r—-1 (3.29)
Thus, indeed the intertwining operatdr is (up to a multiplicative non-zero constant)
7, = mp(XH¥ L (3.30)
Finally, as in [7] we introduce the restricted functiofig) by the formula
PE) = (Ap)E) = 9E 1) = ) umt™. (3.31)

meZy
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Note that the algebre&Z with PBW basisé” may be viewed as (the local coordinates
submanifold of) the cosefO (3, C)/B~, where B~ = HG™ is the subgroup of lower
diagonal matricesH being the subgroup of diagonal matrices.

We denote the representation spacep@f) by ¢, and the representation actlngdh
by #,. Thus, the operatod acts fromC, to C,. The properties of}. follow from the
intertwining requirement for [7]:

7, A = Am,. (3.32)
In particular, the representation actidp on the basi¢™ is given by

f (KE)E™ = q:l:(m—r)%-m (3.3%)

A (XT)E" = —¢"*  m]E" (3.3%)

(X T)E™ = q(lfm)/zuémﬂ_ (3.3%)

(2]

In terms of the functiong the representation, acts as

A, (K5$E) = T T p(&) (3.34)

A (XNGE) = —q T, D5G(E) (3.3%)
1 2

JT,(X )ﬁo(é‘_) %- _1/2(61 T g2 _q_rT;l/z)(;’(g)- (3-34:)

These functions have the property that we can extend (3.33) and (3.34) for arbitrary
complexr. For genericq,r € C the representationg, are irreducible. For generic
g € C andr € Z, /2 the representations, are reducible. In the latter case all properties
parallel the infinitesimal version of the classical case, i.e. on the cBstte restricted
representations of the algebtda may have subrepresentations also of half-integer spin.
Otherwise, the description is as f@r: the representation spaCgehas an invariant subspace
&, of dimension 2 + 1 consisting of the vectors” for m = 0,1,...,2r (60 = 1)), &%
being the lowest weight vector and, being the highest weight vector.

4. Outlook

In the present paper we have shown that the induced holomorphic representations
of U =U,(sl(2)) realized on the cosetsy; of S0,(3) have finite-dimensional
subrepresentations only of odd dimension. Thus, we have obtained finite-dimensional
irreps of U, (so(3)) of integer spin only and have, therefore, recovered the feature of usual
SO (3, C) holomorphic irreps being of integer spin only.

What is also important is that the matrix elements in (3.23) and (3.33) are different from
those of the usual finite-dimensional irrepsi@f(s/(2)). One may argue that this amounts
to a change of basis, and indeed introducing= (1/+/[m]l[2r — m]1)§™, one may bring
the transformation rules to the standard expressions. However, such a transformation would
break down forg being anNth root of unity so thatN < 2r. Indeed, ifg = e¥"/N,
NeN+2,n=1...,N—-1, theng" =1 and V], = sin(nx)/sin(nx/N) = 0, and
the above transformation becomes undefined for cerairThus, for continuity we shall
keep these matrix elements also for genegricThese different matrix elements would lead
to different coefficients in the tensor product decompositions, differgnt63 symbols,
etc, which would be essential at least for the roots of unity case. This is postponed to a
following paper, where the compact real forrig), (3, R) and U, (so(3, R)) (for real )
will also be considered.
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Appendix. Explicit form of the algebra relations of SO, (3)

Here we give the relations which the nine elemegitobey and which follow from (2.2)
and (2.3) using (2.6) and (2.7). This explicit form is also necessary for the verification of
the Gauss decomposition of section 3. The relations are

titie = g tiotik i=13k</?
—k .

Ikjlej = 4 Lojltyj ] = 1,3 k<?
k+L—i—

lijlee = ¢ R

Tkelr+1,e41 = Tt e1tee + A eratiyie k=12

jl‘k(l,'j i< k,] >/

Ik 1tk+1,3 = q Ler1,3001 + AMip1183 k=12
Mil3k+1 = G 13 k101 + Ay kt13k k=12
t1ot32 = q(t32t12 + at13t31)

I21t23 = q(f23f21 + At13t31)

tiatas = q°tastiy + gA(tratar — 1)

l12t22 = 122112 + ti21l13 12t23 = I23l22 + Q13132

Io1tp2 = f22121 + Q12131 toot32 = 32022 + Q131123

12, = —q '[2]tuts 133 = —q [2]t13t33 tiot32 = 121123

15 = —q '[2]tata1 t5 = —q '[2]taats3 t3ot12 = t23t21. (A1)
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