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Abstract. We construct induced representations ofU = Uq(so(3)) ∼= Uq(sl(2)) on suitable
cosets of the matrix quantum groupSOq(3). From these we obtain canonically finite-dimensional
representations ofU only of odd dimension, i.e. of integer spin. The matrix elements of these
finite-dimensional representations are different from the standardU ones, which will be essential
at least for the roots of unity case.

1. Introduction

From the papers of Drinfeld [1] and Jimbo [2] it is clear that the quantum algebrasUq(sl(2))
andUq(so(3)) are isomorphic, since the constructions in [1, 2] use only information about
the root systems ofsl(2) ≡ sl(2,C) ∼= so(3,C) ≡ so(3).

On the other hand, the corresponding matrix quantum groupsSLq(2) andSOq(3) are
not isomorphic. More precisely, as in the classical case, the matrix quantum groupSLq(2)
is a double cover ofSOq(3) [3]. Thus, one may expect that the induced holomorphic
representations ofU = Uq(sl(2)) realized on suitable cosets ofSOq(3) will have the feature
of usualSO(3,C) holomorphic irreps of being integer spin only.

This is exactly what we achieve in the present paper. For applications it is also important
that the matrix elements of these finite-dimensional representations are different from the
standardU ones, which will be essential at least for the roots of unity case.

The procedure used in this paper was proposed by the first named author in 1993
(unpublished) on the example ofSLq(2). In the text we refer to the paper [4], where this
procedure was applied toGLq(n) andSLq(n), and from where the mentioned unpublished
results may be recovered forn = 2.

2. Matrix quantum group SOq(3) and the dualUq(so(3))

The matrix quantum groupA = SOq(n) is the q-deformed analogue of the complex Lie
groupSO(n,C) [5]. It is generated byn2 elements which may be collected in ann × n
matrix

T = (tij ) (2.1)
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and are subject to the following relations [5],

RqT1T2 = T2T1Rq (2.2)

T CT tC−1 = CT tC−1T = In (2.3)

whereRq is a certainn2 × n2 matrix, T1 = T ⊗ In, T2 = In ⊗ T , In is the identityn × n
matrix, andC is a certainn×n matrix. The coalgebra structure is given by [5] the following
formulae for the co-productδA, co-unit εA, and antipodeγA,

δA(tik) =
n∑
j=1

tij ⊗ tjk (2.4a)

εA(tik) = δik (2.4b)

γA(T ) = C T t C−1 (2.4c)

where the antipode is given in matrix form for compactness. Using this form, relations (2.3)
are rewritten in the general form

T γA(T ) = γA(T )T = In. (2.5)

In the casen = 3 theR-matrix Rq has the form [5]

Rq =



q

1
q−1

λ 1
α

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1

β α q−1

λ 1
q


λ = q − q−1

α = −q−1/2λ

β = (1− q−1)λ

(2.6)

and the matrixC is

C =
( 0 0 q−1/2

0 1 0
q1/2 0 0

)
C2 = I3. (2.7)

With these choices from (2.2) and (2.3) we can derive the explicit relations which the
nine elementstij obey. We give them in an appendix since they will be necessary only in
the next section.

The quantum algebra in duality withSOq(n) is Uq(so(n)). For n = 3 one has
U = Uq(so(3)) ∼= Uq(sl(2)), cf [5]. We use a rational basis ofU extracted from the
L-operators of [5]. It differs from the basis of [2] by an algebraic transformation. In terms
of this basis ofU , which we denote byX±, k±, the algebraic relations are

X+X− −X−X+ = (k+ − k−)/λ k+k− = k−k+ = 1U

k±X+ = q∓1X+k± k±X− = q±1X−k±
(2.8)

the coalgebra relations are

δU (k
±) = k± ⊗ k±

δU (X
+) = X+ ⊗ k+ + 1U ⊗X+ (2.9a)

δU (X
−) = k− ⊗X− +X− ⊗ 1U

εU (k
±) = 1 εU (X

+) = 0 εU (X
−) = 0 (2.9b)

γU (k
±) = k∓ γU (X

+) = −X+k− γU (X
−) = −k+X−. (2.9c)
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The duality between the algebrasU andA is given by the pairings between the generators
which follow from [5] (formula (2.1) fork = 1, up to renormalization); explicitly, we have

〈X+, T 〉 =
( 0 −1 0

0 0 q1/2

0 0 0

)

〈X−, T 〉 =
( 0 0 0

1 0 0
0 −q−1/2 0

)
(2.10)

〈k±, T 〉 =
(
q∓ 0 0
0 1 0
0 0 q±

)
.

These pairings are supplemented with the axiomatic pairing

〈X, 1A〉 = εU (X) ∀X ∈ U . (2.11)

The pairing between arbitrary elements ofU andA follows then from the properties of the
duality pairing.

3. Representations ofUq(so(3))

Next we introduce the left regular representation ofU which in the q = 1 case is the
infinitesimal version of

π(M ′)M = M ′−1M M ′,M ∈ SO(3,C) (3.1)

namely we set

πL(X)tij =
3∑
k=1

〈γU (X), tik〉tkj X ∈ U . (3.2)

Note that in [4] was used the classical antipodeγ 0
U (with deformation parameter set to

classical values) instead ofγU , since in these cases things differ only in some intermediate
formulae by inessentialq ··· factors. This would also be true here, but for uniformity we use
γU .

Explicitly, we obtain from (3.2) for the generators ofU

πL(k
±)tij = q±(2−i)tij (3.3a)

πL(X
+)T =

(
t21 t22 t23

−q−1/2t31 −q−1/2t32 −q−1/2t33

0 0 0

)
(3.3b)

πL(X
−)T =

( 0 0 0
−t11 −t12 −t13

q1/2t21 q1/2t22 q1/2t23

)
. (3.3c)

In order to derive the action ofπL on arbitrary elements of the basis, we use the
following twisted derivation rule consistent with the coproduct and the representation
structure. Namely, we use [4]

πL(y)ab = m̂(πL(δ′U (y))(a ⊗ b)) (3.4)

wherem̂ is the multiplication map:m̂: A⊗A −→ A, m̂(f ⊗ f ′) = f · f ′; δ′U = σ ◦ δU is
the opposite coproduct (σ is the permutation operator). Thus, in our concrete situation we
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have

πL(k
±)ab = πL(k±)a · πL(k±)b (3.5a)

πL(X
+)ab = πL(k+)a · πL(X+)b + πL(X+)a · b (3.5b)

πL(X
−)ab = πL(X−)a · πL(k−)b + a · πL(X−)b. (3.5c)

Furthermore, we shall use the fact thatπL is a representation, i.e.

πL(ZZ
′) = πL(Z) · πL(Z′)

πL(αZ + βZ′) = απL(Z)+ βπL(Z′) α, β ∈ C. (3.6)

Next we introduce the right regular representationπR(X) [4] (which is also used in [6],
although not given in this form, there being called left action and denoted byπl):

πR(X)tij =
3∑
k=1

tik〈X, tkj 〉 X ∈ U . (3.7)

Of course, as in [7] we shall use (3.7) as right action in order to reduce the left regular
representation (and we could have also reversed the role of left and right).

Explicitly, we have

πR(k
±)tij = q±(j−2)tij (3.8a)

πR(X
+)T =

( 0 −t11 q1/2t12

0 −t21 q1/2t22

0 −t31 q1/2t32

)
(3.8b)

πR(X
−)T =

(
t12 −q−1/2t13 0
t22 −q−1/2t23 0
t32 −q−1/2t33 0

)
. (3.8c)

The twisted derivation rule (cf [4, 6]) is now given by

πR(y)ab = m̂(πR(δUg (y))(a ⊗ b)) (3.9)

i.e. in our concrete situation

πR(k
±)ab = πR(k±)a · πR(k±)b (3.10a)

πR(X
+)ab = πR(X+)a · πR(k+)b + a · πR(X+)b (3.10b)

πR(X
−)ab = πR(k−)a · πR(X−)b + πR(X−)a · b. (3.10c)

Furthermore, we note that sinceπR is a representation we have

πR(ZZ
′) = πR(Z) · πR(Z′)

πR(αZ + βZ′) = απR(Z)+ βπR(Z′) α, β ∈ C. (3.11)

To continue further we need a PBW basis forA. Due to the fact that there are many
relations between the nine generatorstij , there are several ways to introduce such a basis
[3]. In particular, one may use the 2-to-1 covering ofSOq(3) by the matrix quantum group
SLq(2) [3]. However, there is a more economic and simpler way to introduce such a basis
via the use of a Gauss decomposition. Moreover, the approach of [7] would require the
use of a Gauss decomposition anyway. To obtain this decomposition we suppose now that
there exists an elementt−1

33 . Explicitly, we have

T =
(
t11 t12 t13

t21 t22 t23

t31 t32 t33

)
=
( 1 −q1/2ξ −[2]−1ξ2

0 1 ξ

0 0 1

)(
t−1
33 0 0
0 η 0
0 0 t33

)( 1 0 0
−q−1/2ζ 1 0
−[2]−1ζ 2 ζ 1

)
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=
(
t−1
33 + ξηζ+ q−2[2]−2ξ2ζ 2t33 −q1/2ξη − q−1[2]−1ξ2ζ t33 −[2]−1ξ2t33

−q−1/2ηζ− q−2[2]−1ξζ 2t33 η+ q−1ξζ t33 ξ t33

−q−2[2]−1ζ 2t33 q−1ζ t33 t33

)
(3.12)

where

ξ = t23t
−1
33 ζ = t−1

33 t32 t = t33

η = t−1
33 d11 d11 = t22t33− qt23t32 (3.13)

[n] = [n]q = (qn/2− q−n/2)/λ′ λ′ = q1/2− q−1/2

and the following formulae are used to check (3.12):

t33d11 = d11t33 t233 = d2
11 ⇒ η2 = 1A

ξ2 = −[2]t13t
−1
33 t13d11 = q2 d11t13 t23d11 = q d11t23

ζ 2 = −[2]t−1
33 t31 t31d11 = q2 d11t31 t32d11 = q d11t32

t23d11t32 = q−3{t11t33− 1A − q2t13t31}t233

t23d11t
−1
33 = q1/2t13t32− q−1/2t12t33

t−1
33 d11t32 = q−1/2t23t31− q1/2t33t21.

(3.14)

The above relations in turn are verified by use of the explicit form of the algebraic relations
of SOq(3) which are given in the appendix.

Thus, we see that the relevant variables areξ, η, t, ζ and so a possible PBW basis is

f = fmεp` = ξmηεtpζ ` m, ` ∈ Z+, ε = 0, 1, p ∈ Z. (3.15)

The commutation relations in this basis are

tξ = q−1ξ t tη = ηt tζ = q−1ζ t

ηξ = ξη ζξ = ξζ ζη = ηζ. (3.16)

We see that this basis is very convenient since it is almost commutative.
Following the procedure of [4] our representation spaces will have elements which are

formal power series in the basis (3.15) obeying right covariance conditions. By abuse of
the notion we shall call these elements functions; explicitly, we write

ϕ̃ =
∑

m,`∈Z+
ε=0,1,p∈Z

µmεp`ξ
mηεtpζ `. (3.17)

The right covariance conditions [4] for the holomorphic representations are with respect to
X−, k+:

πR(X
−)ϕ̃ = 0 (3.18a)

πR(k
+)ϕ̃ = qr ϕ̃ (3.18b)

where r is a parameter to be specified later. Note that from (3.18b) it follows that
πR(k

−)ϕ̃ = q−r ϕ̃. First, we calculate

πR(X
−)
(
ξ η

ζ t

)
=
(

0 0
−q1/2 0

)
(3.19)

which means that in order to fulfill (3.18a) our functions should not depend on the variable
ζ , i.e. the functions become

ϕ̃ =
∑
m∈Z+

ε=0,1,p∈Z

µmεpξ
mηεtp. (3.20)
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Note that the algebraYq with PBW basisξmηεtp may be viewed as theq-deformation
of (the local coordinates submanifold of) the cosetY = SO(3,C)/G−, whereG− is the
subgroup of lower diagonal matrices with main diagonal entries equal to 1. Furthermore,
note the decompositionYq = Y0

q⊕Y1
q , whereY0

q , Y1
q are isomorphic subalgebras with bases

ξmtp, ξmηtp, respectively.
Next we obtain by direct calculation

πR(k
+)ξmηεtp = qpξmηεtp. (3.21)

From the latter and (3.18b) it follows that in (3.20) there is no summation inp sincep = r;
consequently, the parameterr should be integer and our functions become

ϕ̃ =
∑
m∈Z+
ε=0,1

µmεξ
mηεtr r ∈ Z. (3.22)

Now we suppose thatq is not a root of unity. We calculate the transformation action:

πL(k
±)ξmηεtr = q±(m−r)ξmηεtr (3.23a)

πL(X
+)ξmηεtr = −qm/2−1[m]ξm−1ηεtr (3.23b)

πL(X
−)ξmηεtr = q(1−m)/2 [2r −m]

[2]
ξm+1ηεtr . (3.23c)

It is easy to check thatπL(k±) andπL(X±) satisfy (2.8). Note that these transformations do
not change the parametersr and ε, i.e. we have obtained representations parametrized by
r ∈ Z, ε = 0, 1. However, we see that the parameterε is fictitious since the transformation
rules do not depend on it. Furthermore, the variableη is passive also with respect to the
right action: πR(X±)η = 0, πR(k±)η = η. Thus, for fixedε the representation acts in the
q-cosetYεq , i.e. our functions become

ϕ = ϕ(ξ, η, t) =
∑
m∈Z+

µmξ
mηεtr r ∈ Z, ε = 0, 1. (3.24)

For simplicity, we shall further setε = 0 and denote our functions asϕ(ξ, t). We denote
the representation action byπr , which in terms of the functionsϕ(ξ, t) may be written as

πr(k
±)ϕ(ξ, t) = q∓rT ξq±ϕ(ξ, t) (3.25a)

πr(X
+)ϕ(ξ, t) = −q−1T

ξ

q1/2D
ξ
qϕ(ξ, t) (3.25b)

πr(X
−)ϕ(ξ, t) = q1/2ξ

λ
T
ξ

q−1/2(q
rT

ξ

q−1/2 − q−rT ξq1/2)ϕ(ξ, t) (3.25c)

T ξq f (ξ) = f (qξ) Dξ
qf (ξ) =

ξ−1

λ′
(T

ξ

q1/2 − T ξq−1/2)f (ξ). (3.26)

We denote withCr the representation space of functionsϕ(ξ, t) with covariance
properties (3.18) and transformation laws (3.23) (withε = 0) and (3.25). For generic
q ∈ C andr ∈ Z+ the representationπr is reducible. Indeed, forr ∈ Z+ the representation
spaceCr has an invariant subspaceEr of dimension 2r+1 consisting of the vectorsξmtr for
m = 0, 1, . . . ,2r, (ξ0t0 ≡ 1A). The latter statement is obvious, as from (3.23c) it follows
thatπL(X−)ξ2r t r = 0. Thus,ξ2r t r (ξ0t0 = 1A) is the lowest weight vector, whilet r is the
highest weight vector:πL(X+)t r = 0.

Thus, the set of finite-dimensional representations ofU obtained as subrepresentations
of the elementary representations realized on the cosetY0

q (or Y1
q ) of SOq(3) is parametrized

by non-negative integers and for fixedr ∈ Z+ the corresponding finite-dimensional
representation is of dimension 2r + 1, i.e. all dimensions areodd.
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The latter result should be put in contrast with the fact that the set of finite-dimensional
representations ofU obtained as subrepresentations of the elementary representations
realized on cosets ofSLq(2) is parametrized by non-negative integers and for fixedr ∈ Z+
the corresponding finite-dimensional representation is of dimensionr + 1, i.e. all integer
dimensions are possible.

Thus, we recover the classical result that the finite-dimensional irreps ofSO(3,C) are
only of integer spin j ∈ Z+, (j = r), and hence ofodd dimension 2j + 1, while the
finite-dimensional irreps ofSL(2) (which is a double covering group ofSO(3,C)) are
of (half-)integer spinj ∈ Z+/2, (j = r/2), and hence of any integer dimension 2j + 1.
(Of course, physicists consider finite-dimensional irreps ofSO(3,C) also of half-integer
spin, calling them two-valued irreps; moreover, infinitesimally such considerations are also
mathematically correct sinceso(3) ∼= sl(2).)

Otherwise, other results are in parallel with theSLq(2) case. In particular, the
finite-dimensional invariant subspaceEr discussed above is the kernel of an operatorIr
intertwining the representationsπr andπr ′ , i.e.

Irπr(Y ) = πr ′(Y )Ir Y ∈ U (3.27)

wherer ′ is expected to be−r − 1. According to the general prescription [7] this operator
should be given by(πR(X+))s where the parameters is expected to be 2r+1 (=dimEr ). This
can be checked directly. Indeed, lets ∈ N and let us suppose thatϕ′ = (πR(X+))sϕ ∈ Cr ′ .
The latter means first (by right covariance (3.18a)) thatπR(X−)ϕ′ = 0. We calculate

πR(X
−)ϕ′ = πR(X−)(πR(X+))sϕ
= [πR(X

−), (πR(X+))s ]ϕ
= πR([X−, (X+)s ])ϕ
= πR([X−, (X+)s ])ϕ
= πR([s](X+)s−1(q(s−1)/2k− − q−(s−1)/2k+)/λ)ϕ

= [s]

λ
πR((X

+)s−1)πR(q
(s−1)/2k− − q−(s−1)/2k+)ϕ

= [s]

λ
πR((X

+)s−1)(q(s−1)/2−r − qr−(s−1)/2)ϕ

= [s][s − 1− 2r]

[2]
πR((X

+)s−1)ϕ. (3.28)

For q not a root of unity the last quantity may be zero only fors = 2r + 1, as expected.
Moreover, we use the other condition of right covariance (3.18b), πR(k+)ϕ′ = qr ′ϕ′, i.e.

πR(k
+)ϕ′ = πR(k+)(πR(X+))sϕ
= πR(k+(X+)s)ϕ
= πR(q−s(X+)sk+)ϕ
= q−sπR((X+)s)πR(k+)ϕ
= qr−sπR((X+)s)ϕ = qr−sϕ′
H⇒ r ′ = r − s = −r − 1. (3.29)

Thus, indeed the intertwining operatorIr is (up to a multiplicative non-zero constant)

Ir = πR(X+)2r+1. (3.30)

Finally, as in [7] we introduce the restricted functionsϕ̂(ξ) by the formula

ϕ̂(ξ) = (Aϕ)(ξ) ≡ ϕ(ξ, 1A) =
∑
m∈Z+

µmξ
m. (3.31)
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Note that the algebraZ with PBW basisξm may be viewed as (the local coordinates
submanifold of) the cosetSO(3,C)/B−, whereB− = HG− is the subgroup of lower
diagonal matrices,H being the subgroup of diagonal matrices.

We denote the representation space ofϕ̂(ξ) by Ĉr and the representation acting in̂Cr
by π̂r . Thus, the operatorA acts fromCr to Ĉr . The properties ofĈr follow from the
intertwining requirement forA [7]:

π̂rA = Aπr. (3.32)

In particular, the representation actionπ̂r on the basisξm is given by

π̂r (k
±)ξm = q±(m−r)ξm (3.33a)

π̂r (X
+)ξm = −qm/2−1[m]ξm−1 (3.33b)

π̂r (X
−)ξm = q(1−m)/2 [2r −m]

[2]
ξm+1. (3.33c)

In terms of the functionŝϕ the representation̂πr acts as

π̂r (k
±)ϕ̂(ξ) = q∓rT ξq± ϕ̂(ξ) (3.34a)

π̂r (X
+)ϕ̂(ξ) = −q−1T

ξ

q1/2D
ξ
q ϕ̂(ξ) (3.34b)

π̂r (X
−)ϕ̂(ξ) = q1/2ξ

λ
T
ξ

q−1/2(q
rT

ξ

q−1/2 − q−rT ξq1/2)ϕ̂(ξ). (3.34c)

These functions have the property that we can extend (3.33) and (3.34) for arbitrary
complex r. For genericq, r ∈ C the representationŝπr are irreducible. For generic
q ∈ C and r ∈ Z+/2 the representationŝπr are reducible. In the latter case all properties
parallel the infinitesimal version of the classical case, i.e. on the cosetZ the restricted
representations of the algebraU may have subrepresentations also of half-integer spin.
Otherwise, the description is as forCr : the representation spaceĈr has an invariant subspace
Êr of dimension 2r + 1 consisting of the vectorsξm for m = 0, 1, . . . ,2r (ξ0 ≡ 1A), ξ2r

being the lowest weight vector and 1A being the highest weight vector.

4. Outlook

In the present paper we have shown that the induced holomorphic representations
of U = Uq(sl(2)) realized on the cosetsYεq of SOq(3) have finite-dimensional
subrepresentations only of odd dimension. Thus, we have obtained finite-dimensional
irreps ofUq(so(3)) of integer spin only and have, therefore, recovered the feature of usual
SO(3,C) holomorphic irreps being of integer spin only.

What is also important is that the matrix elements in (3.23) and (3.33) are different from
those of the usual finite-dimensional irreps ofUq(sl(2)). One may argue that this amounts
to a change of basis, and indeed introducingvm = (1/

√
[m]![2r −m]!)ξm, one may bring

the transformation rules to the standard expressions. However, such a transformation would
break down forq being anN th root of unity so thatN 6 2r. Indeed, ifq = e2π in/N ,
N ∈ N + 2, n = 1, . . . , N − 1, thenqN = 1 and [N ]q = sin(nπ)/ sin(nπ/N) = 0, and
the above transformation becomes undefined for certainm. Thus, for continuity we shall
keep these matrix elements also for genericq. These different matrix elements would lead
to different coefficients in the tensor product decompositions, different 3j , 6j symbols,
etc, which would be essential at least for the roots of unity case. This is postponed to a
following paper, where the compact real formsSOq(3,R) andUq(so(3,R)) (for real q)
will also be considered.
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Appendix. Explicit form of the algebra relations of SOq(3)

Here we give the relations which the nine elementstij obey and which follow from (2.2)
and (2.3) using (2.6) and (2.7). This explicit form is also necessary for the verification of
the Gauss decomposition of section 3. The relations are

tikti` = q`−kti`tik i = 1, 3, k < `

tkj t j̀ = q`−kt j̀ tkj j = 1, 3, k < `

tij tk` = qk+`−i−j tk`tij i < k, j > `

tk`tk+1,`+1 = tk+1,`+1tk` + λtk,`+1tk+1,` k, ` = 1, 2

tk,1tk+1,3 = q tk+1,3tk,1+ λtk+1,1tk,3 k = 1, 2

t1,kt3,k+1 = q t3,k+1t1,k + λt1,k+1t3,k k = 1, 2

t12t32 = q(t32t12+ αt13t31)

t21t23 = q(t23t21+ αt13t31)

t11t33 = q2t33t11+ qλ(t13t31− 1)

t12t22 = t22t12+ αt21t13 t22t23 = t23t22+ αt13t32

t21t22 = t22t21+ αt12t31 t22t32 = t32t22+ αt31t23

t212 = −q−1[2]t11t13 t223 = −q−1[2]t13t33 t12t32 = t21t23

t221 = −q−1[2]t11t31 t232 = −q−1[2]t31t33 t32t12 = t23t21. (A1)
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